USING A POPLAR HYBRID TO INVESTIGATE HOST PLANT GENETIC CONTROL OF ASSOCIATING FUNGAL AND INSECT COMMUNITIES

Sandra J. Simon, Stephen P. DiFazio, Jared LeBouldus, Wellington Muchero and David Macaya-Sanz

Genetically Based Host Plant Resistance

Physical Barriers

- 1. Antixenosis- morphological, physical, and structural barriers
 - Interferes with oviposition/tissue invasion/hostplant recognition
- 2. Antibiosis- biophysical and biochemical defenses
 - Interferes with pest or pathogen feeding/development
- 3. Tolerance- ability to withstand and survive attack
 - Support pest or pathogen load
 - Stable yields

Secondary Metabolites

Eisner et al. 1998

Phytoalexin- Capsidol Tobacco resistance to water-mold

Brassicaceae resistance to insect feeding

Pathogen/Pest-Host Plant Relationship

Abiotic vs Biotic Stress

Biotic interactions are complex

- Relationship between two genomes
- Both systems are evolving
- Gene-for-Gene Hypothesis
- Host-plant resistance/susceptibility avirulent/virulent gene in corresponding locus of pest/pathogen
- Resistance is often polygenic

Copyright © 2008 Pearson Benjamin Cummings. All rights reserved.

Potential Impacts on Host-Plant Genome Structure

- Diversifying selection pressure on host-plants
- Expansion of genes responsible for resistance
- Tandem-duplications
 - Duplication of exons within the same gene
 - Accumulate mutations leading to new function
 - Increasing genetic diversity for selection
- Examples:
 - Insect-plant relationships: Kunitz trypsin inhibitors (KTIs)
 - Disrupt insect digestion
 - Pathogen-plant relationships: Nucleotide-binding site leucine-rich repeat resistance genes (NBS-LRR R-genes)
 - Signal for hypersensitive response

Forest tent caterpillar (Malacosoma disstria)

Venturia sp. shoot blight

ot blight *Melampsora* sp. leaf rust Andrej Kunca, National Forest Centre - Slovakia, Bugwood.org

Significance

- Similarities among genome patterns for pathogen and insect resistance
- Understanding genomic mechanisms of resistance
 - Community genetics- host-plant genetic structure impacts on ecosystem function
 - Co-evolution pathogen/pest and host-plant systems
 - Breeding for resistance

Objective 1: Identification of loci responsible for genetic control of biotic organisms (hybrid family analysis).

- 1. Is there heritable, host genetic control of insect and fungal species?
- 2. What genetic intervals associate with each insect and fungal species?

Objective 2: Identification of candidate genes for resistance through genome comparisons of *P. trichocarpa* and *P. deltoides* parents.

3. What genes and recent tandem duplications are unique in genetic intervals upon comparison of the *P. trichocarpa* and *P. deltoides* genomes?

Plantation Surveys

Pseudo-backcross pedigree Family 52124

Hybrid Populus Pedigree in Common Gardens

WVU Agronomy Farm

- 2008- Melampsora sp. leaf rust and Sphaerulina sp. leaf spot
 - 1353 trees (851 unique clones)
- 2016- *Mordwilkoja vagabunda* (Vagabond aphid) and *Pemphigus populitransversus* (Petiole galling aphid)
 - 218 trees (201 unique clones)

Westport, Oregon

- 2017- *Phyllocolpa bozemani* (Leaf-folding sawfly) and *Phyllocnistis populiella* (Aspen serpentine miner
 - 1,020 trees (534 unique clones)

Quantitative Trait Loci (QTL) Mapping

• ~3,500 segregating single nucleotide polymorphic (SNP) markers

Host Plant Genetic Control

Fungus/Insect	H ²	Clone Variance	Error Variance	RLRatio	p-value
Melampsora sp. leaf rust	0.622	0.631	0.382	294	< 0.0001
Sphaerulina sp. leaf spot	0.227	0.099	0.337	32.0	< 0.0001
Phyllocolpa bozemani	0.391	11.9	18.5	129	< 0.0001

Mordwilkoja vagabunda were binary trait; only used in the QTL analysis.

Fungal Pathogens

Melampsora sp. leaf rust

- Biotrophic fungi
- Uses poplar and willow tissue to perpetuate spores, intensifying the infection.
- Requires poplar and conifers to complete life-cycle.

Sphaerulina sp. leaf spot

- Necrotrophic fungi
- Dead lesions on leaves
- After infection obtains nutrients from and reproduces in dead host tissue.

QTL Analysis: *Melampsora* sp. leaf rust and *Sphaerulina* sp. leaf spot

Chromosome

Surveyed Fungi Melampsora sp. leaf rust Sphaerulina sp. leaf spot

Resistance- *P. trichocarpa* Variance explained by marker- 54.1% p-value = 0.001

Resistance- *P. trichocarpa* Variance explained by marker- 3.31% p-value = 0.026

Insect Pests

Leaf-folding sawfly (Phyllocolpa bozemani)

- Early in spring female sawflies sting leaf edge to create a fold.
- One egg is laid and larvae feed on tissue in the fold.

Aspen serpentine miner (*Phyllocnistis populiella*)

• Larvae feed on mesophyll between epidermal tissues of the leaf.

Vagabond aphid (*Mordwilkoja vagabunda*)

• Aphids feed on terminal buds forming bladder-like galls.

Poplar petiole galling aphid (*Pemphigus populitransversus*)

- Gall formation on petiole to feed internally.
- Reproduce clonally on poplars and sexually on Brassica plants.

QTL Analysis: Insect Surveys

QTL Analysis: Insect Surveys

Leaf-folding sawfly Chromosome 10 marker:

- Resistance- P. deltoides
- Variance explained 9.65%
- p-value = 0.015

Chromosome 13 marker:

- Resistance- *P. deltoides*
- Variance explained- 8.82%
- p-value = 0.045

Vagabond aphid Chromosome 5

- Resistance- P. trichocarpa
- Presence-absence score
- p-value = 0.001

P. trichocarpa and P. deltoides Genome Comparisons

Recent tandem duplications were enriched in biotic intervals relative to the rest of the genome in *P. deltoides* (p = 0.0118) but not in *P. trichocarpa* (p = 0.1191).

Candidate Gene List

	Description	Tandem Duplicate Gene Copies P. trichocarna: P. deltoides	Protein Family	Enrichment p-value	QTL Interval Chromosome
Antixenosis: Lipid transfer protein; cell wall loosening	Stigma-specific protein, Stig1*	NA	PF04885 (D)	1.31E-06	4
	Peroxidase superfamily protein	1;2	NA	NA	4
heat-shock; sugar transport	Early-responsive to dehydration stress protein	3; 3	NA	NA	4
Resistance genes: Novel	Disease resistance protein (TIR-NBS-LRR class)	7;12	NA	NA	5
pathways for resistance	Cytochrome P450, family 76, subfamily G	5;4	NA	NA	5
Antibiosis: Secondary	Cytochrome P450, family 93, subfamily D	2;0	NA	NA	5
	O-methyltransferase	Chromosome 13: 4; 4	PF00891 (T)	1.79E-05	13
Susceptibility: Sink strength	Sugar Transporter	NA	PF00083 (T)	1.39E-04	5, 13
	Lipoxygenase; PLAT/LH2 domain	Chromosome 5: 4; 3	PF00305; PF01477 (T)	1.09E-05	5, 10
	Copper amine oxidase, enzyme domain*	Chromosome 10: 3; 0	PF01179 (T)	3.73E-05	10

* Indicates genes encoding protein type undergoing positive selection (Ka/Ks>1.00) present in QTL Interval. (T)- protein family enriched in *P. trichocarpa* genome interval. (D)- protein family enriched in *P. deltoides* genome interval.

Conclusions

- The hybrid family cross segregated for pathogen and pest symptoms.
 - Identified multiple genetic associations with pathogens and pests.
- Recent tandem duplications appeared to be characteristic of genetic intervals that associate with biotic stressors.
- Identified multiple mechanisms of host plant resistance both within and among genetic intervals.
- Identified similar mechanisms of resistance and susceptibility in genetic intervals that associate with different insect pests.

Acknowledgements

DiFazio Lab

- Stephen DiFazio
- David Macaya-Sanz
- Hari Chhetri
- Julianne Grady
- Ran Zhou
- Rose Strickland-Constable
- Luke Evans

Pathogen Experts • William McDonald

- Jared LeBoldus

Texas Tech-Olsen Lab

Cornell University- Smart Lab

University of Wisconsin- Keefover-Ring Lab **Greenwood Resources**

Oak Ridge National Lab

Bioenergy Science Center

Funding:

Questions?

